MENU
Sky View Through an Archway on Campus

Editing Help

Please reference the Faculty Profile Editing Guide if you have any questions or issues updating your profile. If you receive any error notices please contact webservices@fit.edu.

Aaron Welters

Associate Professor | College of Engineering and Science: Department of Mathematics and Systems Engineering

Contact Information

Expertise

Mathematical Physics & Applied Mathematics (Electromagnetism, Photonic Crystals, Composites); Linear algebra; Complex Analysis; Functional Analysis; Operator Theory

Personal Overview

I am an Associate Professor in the Department of Mathematics and Systems Engineering (MSE) at Florida Tech (FIT). Before coming to FIT, I was held a two-year postdoctoral position (from 2012-2014) as an Applied Mathematics Instructor in the Department of Mathematics at Massachusetts Institute of Technology (MIT). In 2011, I completed my Ph.D. in Mathematics at the University of California, Irvine (UCI). During 2011-2012, I was a VIGRE Postdoctoral Researcher in the Department of Mathematics at Louisiana State University (LSU).

Educational Background

Ph.D., Mathematics, University of California-Irvine, Irvine, CA

B.A., Mathematics, St. Cloud State University, St. Cloud, MN

Selected Publications

Here is a list of my publications and preprints.

  1. G. W. Milton and A. Welters, Complete characterization of symmetric Kubo-Ando operator means satisfying Molnar's weak associativity, arXiv:2405.20108 [math.FA] (preprint). doi: 10.48550/arXiv.2405.20108
  2. A. Stefan and A. Welters, Continuity of the roots of a nonmonic polynomial and applications in multivariate stability theory, arXiv:2112.14287 [math.CA] (preprint). doi: 10.48550/arXiv.2112.14287
  3. K. Beard and A. Welters, Matrix monotonicity and concavity of the principal pivot transform, Linear Algebra Appl., 628, 323-350 (Feb. 1, 2024). doi: 10.1016/j.laa.2023.11.016
  4. B. Alshammari and A. Welters, On the spectral theory of linear differential-algebraic equations with periodic coefficients, Journal of Analysis and Mathematical Physics, 13(94) (2023). doi: 10.1007/s13324-023-00856-0
  5. K. Beard, A. Stefan, R. Viator, and A. Welters, Effective operators and their variational principles for discrete electrical network problems, J. Math. Phys., 64(7), 073501 (2023). doi: 10.1063/5.0130429
  6. A. Stefan and A., Welters, Extension of the Bessmertnyĭ Realization Theorem for Rational Functions of Several Complex Variables. Complex Anal. Oper. Theory 15, 115 (2021). doi: 10.1007/s11785-021-01150-2
  7. A. Stefan and A. Welters, A short proof of the symmetric determinantal representation of polynomials, Linear Algebra Appl., 627, 80-93 (2021). doi: 10.1016/j.laa.2021.06.007
  8. M. Cassier, A. Welters, and G. W. Milton, A rigorous approach to the field recursion method for two-component composites with isotropic phases, Chap. 10 in: G. W. Milton (editor), Extending the Theory of Composites to Other Areas of Science. Milton-Patterson Publishing, Salt Lake City, UT, 2016. ISBN: 978-1483569192. doi: 10.48550/arXiv.1601.01378
  9. M. Cassier, A. Welters, and G. W. Milton, Analyticity of the Dirichlet-to-Neumann map for the time-harmonic Maxwell's equations, Chap. 4 in: G. W. Milton (editor), Extending the Theory of Composites to Other Areas of Science. Milton-Patterson Publishing, Salt Lake City, UT, 2016. ISBN: 978-1483569192. doi: 10.48550/arXiv.1512.05838
  10. A. Figotin and A. Welters, On overdamping phenomena in gyroscopic systems composed of high-loss and lossless components, J. Math. Phys. 57, 042902 (2016) doi: 10.1063/1.4944721
  11. A. Figotin and A. Welters, Lagrangian framework for systems composed of high-loss and lossless components, J. Math. Phys. 55, 062902 (2014). doi: 10.1063/1.4884298
  12. A. Welters, Y. Avniel, and S. G. Johnson, Speed-of-light limitations in passive linear media, Phys. Rev. A 90, 023847 (2014). doi: 10.1103/PhysRevA.90.023847
  13. S. P. Shipman and A. Welters, Resonant electromagnetic scattering in anisotropic layered media, J. Math. Phys. 54, 103511 (2013). doi: 10.1063/1.4824686
  14. S. P. Shipman and A. Welters, Resonance in anisotropic layered media, 2012 International Conference on Mathematical Methods in Electromagnetic Theory, 2012, pp. 227-232, doi: 10.1109/MMET.2012.6331235
  15. A. Figotin and A. Welters, Dissipative properties of systems composed of high-loss and lossless components, J. Math. Phys. 53, 123508 (2012). doi: 10.1063/1.4761819
  16. A. Welters, On Explicit Recursive Formulas in the Spectral Perturbation Analysis of a Jordan Block, SIAM J. Matrix Anal. Appl., 32:1, 1-22 (2011). doi: 10.1137/090761215
  17. A. Welters, On the Mathematics of Slow Light. Thesis (Ph.D.)-Univ. of Calif., Irvine. ProQuest LLC, Ann Arbor, MI, 2011.

Recognition & Awards

Aaron Welters (PI) and Xianqi Li (Co-PI), Collaborative Research: Data-driven Realization of State-space Dynamical Systems via Low-complexity Algorithms, National Science Foundation (NSF), $125,000, Aug. 1, 2024-July 31, 2027, Grant no.: DMS 2410678.

Aaron Welters (PI), Variational principles, bounds, and realizability of effective operators for metamaterial synthesis using multphase composites, Simons Foundation, Travel Support for Mathematicians, $42,000 ($8,400/year), Sept. 1, 2023-Aug. 31, 2028, Gift ID: MPS-TSM-00002799.

Aaron Welters (PI), YIP early career award, On a Theory of Broadband Absorption Suppression in Magnetic Composites, Air Force Office of Science Research (AFOSR), $264,199.41, Apr. 1, 2015-Mar. 31, 2018, AFOSR Grant no.: FA9550-15-1-0086. AFOSR Program Officer: Dr. Arje Nachman, Electromagnetics. Technical report @ https://apps.dtic.mil/sti/pdfs/AD1058297.pdf

Research

Research Interests:

  • Applied mathematics
  • Mathematical physics

Focus Areas:

  • Electromagnetics
  • Material science (composites and effective media) 
  • Dissipative systems

Mathematical Specializations:

  • Linear algebra
  • Functional analysis
  • Spectral and scattering theory
  • Perturbation theory
  • Passive linear systems theory
  • Herglotz-Nevanlinna functions

Current/Past Research Topics:

  • Positive operator means (e.g., Kubo-Ando means)
  • Monotonicity and concavity/convexity properties of matrix functions
  • Spectral theory of linear differential-algebraic equations (DAEs)
  • Realizability theory of multivariate functions (e.g., Bessmertnyi realizations, effective operator representations) 
  • Theory of composites and its extensions
  • Herglotz-Nevanlinna functions and their applications
  • Broadband absorption suppression in magnetic composites
  • Slow-light enhancement of light-matter interactions
  • Speed-of-light limitations in complex media
  • Wave propagation in complex and periodic media [e.g., metamaterials, composites, photonic crystals, materials with defects, slow and fast light, guided modes (i.e., embedded eigenvalues), resonance phenomena]

Current/Past Ph.D students: 

  • Anthony Stefan - Expected Graduation Date: May 2025
    • Dissertation title (tentative): Bessmertny ̆ı realizations of effective tensors with symmetries in multiphase composites for metamaterial synthesis.
  • Bader Alshammari - Graduation Date: July 2022

Current/Past MS students (with Thesis):

  • Kenneth Beard - Graduation Date: May 2022
  • Anthony Stefan - Graduation Date: May 2021
    • Thesis title: Schur Complement Algebra and Operations with Applications in Multivariate Functions, Realizations, and Representations
    • http://hdl.handle.net/11141/3260
Edit Page